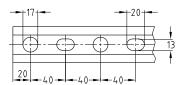
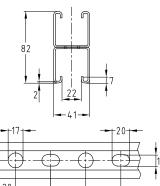
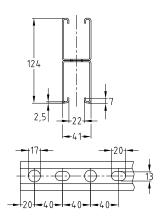

Н-Профиль, горячее цинкование


Применение

- Идеальная компактная направляющая для трубных трасс между перекрытиями
- Идеально для монтажа трубопроводов в качестве несущей конструкции для воздушных каналов внутри и снаружи
- Разнообразные возможности использования при монтаже и установке стеллажей в сочетании с обширной программой модульных деталей


- Быстрое и рациональное крепление участков и трасс трубопро-
- Идеальная комбинация высокой прочности на изгиб и удобства монтажа
- Монтаж с двух сторон позволяет просто и быстро юстировать все подвешенные и установленные трубные крепления
- Штрихи деления шкалы сбоку и на стороне с канавкой упрощают работу по выверке крепежных элементов во время монтажа и облегчают замер и раскрой профилей на месте строительных работ
- Подходящие виброизоляционные элементы для всех монтажных профилей
- Аккуратный внешний вид благодаря использованию MPR заглушек
- Зубья в канавке профиля для фиксации присоединяемых деталей с геометрическим замыканием



Профиль 41/42/2,0

Профиль 41/82/2,0

Профиль 41/124/2,5

Профиль	Длина [мм]	Номер артикула	Количество в упаковке	Единица измерения
41/42/2,0	6640	154185	1	штука
41/82/2,0		154186		
41/124/2,5		154187		

горячее цинкование

Технические характеристики профилей:

Профиль	Материал/ Поверхность			пряжение пластины с г в стали резьбовым		Поперечное Момент сечение инерции профиля		Момент сопротивления		
ل _{ای} ل		f _{y,k}	одоп.	отверстием*			ly	lz	W_y	Wz
		[N/mm ²]	[H/mm ²]		[KL/W]	[CM ²]	[CM ⁴]	[CM ⁴]	[CM ³]	[CM ³]
41/21/2,0	S235/	250	162	M8, M10,	1,45	1,62	0,8894	4,5246	0,839	2,207
41/41/2,0	горячее			M12, M16	2,08	2,42	4,9736	7,5692	2,451	3,692
41/41/2,5	цинкование				2,53	3,08	5,8103	9,0333	2,839	4,406
41/62/2,5					3,38	3,98	17,2090	12,9297	5,671	6,307
41/42/2,0 Н-профиль					2,90	3,24	5,2844	9,0492	2,516	4,414
41/82/2,0 Н-профиль					4,16	4,83	30,6876	15,1385	7,485	7,385
41/124/2,5 Н-профиль					6,76	7,96	111,7528	25,8595	18,025	12,614

Максимальная нагрузка в [Н]:

Профиль	L [m]						L [m] ↓F ↓F					
	—L/2—L							[-1/3-J-1/3-J				
	0,5	1,0	1,5	2,0	4,0	6,0	0,5	1,0	1,5	2,0	4,0	6,0
41/21/2,0	1 086	439	186	94	-	-	813	258	109	55	-	-
41/41/2,0	3 178	1 581	1 046	601	106	-	2 379	1 187	643	353	62	-
41/41/2,5	3 681	1 831	1 210	701	121	-	2 755	1 375	750	411	71	-
41/62/2,5	7 357	3 666	2 430	1 808	459	117	5 506	2 752	1 823	1 248	270	68
41/42/2,0 Н-профиль	3 066	1 620	1 068	630	95	-	1 533	1 216	679	370	56	-
41/82/2,0 Н-профиль	6 562	4 840	3 210	2 389	865	277	3 271	3 261	2 407	1 791	508	162
41/124/2,5 Н-профиль	13 613	11 671	7 753	5 786	2 794	1 316	6 806	6 790	5 815	4 337	1 969	772

Профиль	L [m] F F F -1/4						L [m]					
	0,5	1,0	1,5	2,0	4,0	6,0	0,5	1,0	1,5	2,0	4,0	6,0
41/21/2,0	543	185	78	40	_	_	453	145	61	31	_	_
41/41/2,0	1 589	791	461	253	44	_	1 324	659	362	199	35	_
41/41/2,5	1 840	916	538	295	51	-	1 534	763	423	232	40	-
41/62/2,5	3 678	1 833	1 215	896	193	49	3 065	1 527	1 013	703	152	39
41/42/2,0 Н-профиль	1 022	810	487	265	40	_	766	675	383	208	32	_
41/82/2,0 Н-профиль	2 181	2 174	1 605	1 175	364	116	1 635	1 630	1 337	995	286	91
41/124/2,5 Н-профиль	4 538	4 527	3 877	2 893	1 397	554	3 403	3 395	3 231	2 411	1 109	435

Дополнительную информацию можно найти в разделах "квадратные гайки для профиля" и "крепежрный элемент".

Определенные нагрузки действительны для статических нагрузок. Расчет на основании Eurocode (EC3). Коэффициент безопасности $\gamma = 1,54$ учитывает коэффициенты безопасности и сочетания в соответствии а также коэффициент безопасности материала.

В указанных значениях не превышаются допустимое напряжение стали в соответствии с таблицей, технические характеристики, а также максимально допустимый прогиб L/200 с учетом собственного веса.

горячее цинкование

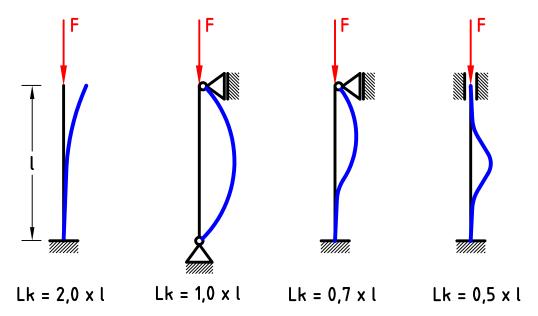
Допустимые нагрузки при продольном изгибе для профилей в [H]:

Длина элемента, подверженного продольному изгибу Lk	MPR 41/21/2,0	MPR 41/41/2,0	MPR 41/41/2,5	MPR 41/62/2,5	MPR 41/42/2,0	MPR 41/82/2,0	MPR 41/124/2,5
[мм]							
200	25 378	39 273	49 092	64 658	52 573	78 466	129 317
300	23 868	38 858	48 434	64 658	51 488	78 466	129 317
400	22 098	37 772	47 023	63 651	49 827	77 628	128 065
500	19 980	36 633	45 537	62 224	48 054	76 510	126 262
600	17 564	35 413	43 935	60 743	46 113	75 321	124 350
700	15 076	34 083	42 179	59 184	43 958	74 032	122 285
800	12 776	32 620	40 241	57 523	41 561	72 610	120 014
900	10 803	31 013	38 108	55 738	38 929	71 016	117 480
1 000	9 173	29 266	35 797	53 811	36 114	69 209	114 618
1 100	7 846	27 407	33 354	51 733	33 212	67 146	111 362
1 200	6 766	25 482	30 854	49 505	30 336	64 793	107 652
1 300	5 884	23 553	28 379	47 143	27 586	62 131	103 454
1 400	5 157	21 675	26 005	44 678	25 032	59 172	98 774
1 500	4 553	19 895	23 781	42 154	22 706	55 971	93 681
1 600	4 048	18 241	21 736	39 620	20 617	52 615	88 300
1 700	3 620	16 724	19 878	37 127	18 755	49 209	82 792
1 800	3 256	15 348	18 205	34 714	17 102	45 855	77 321
1 900	2 944	14 106	16 703	32 416	15 636	42 632	72 022
2 000	2 674	12 989	15 359	30 251	14 336	39 593	66 992
2 100	2 439	11 986	14 156	28 230	13 181	36 764	62 286
2 200	2 234	11 084	13 078	26 356	12 153	34 155	57 927
2 300	2 054	10 273	12 112	24 626	11 236	31 763	53 916
2 400	1 894	9 543	11 243	23 033	10 415	29 577	50 241
2 500	1 752	8 884	10 460	21 569	9 678	27 583	46 881
2 600	1 626	8 289	9 754	20 225	9 014	25 765	43 812
2 700	1 512	7 749	9 114	18 991	8 415	24 107	41 010
2 800	1 411	7 258	8 534	17 857	7 872	22 594	38 448
2 900	1 319	6 812	8 006	16 815	7 380	21 211	36 106
3 000	1 235	6 404	7 525	15 856	6 931	19 946	33 960
3 100	1 160	6 031	7 084	14 973	6 522	18 785	31 992
3 200	1 091	5 689	6 681	14 158	6 148	17 720	30 183
3 300	1 028	5 375	6 311	13 405	5 804	16 740	28 519
3 400	970	5 086	5 970	12 709	5 488	15 837	26 985
3 500	917	4 820	5 656	12 063	5 197	15 004	25 568
3 600	869	4 573	5 366	11 465	4 929	14 233	24 257
3 700	824	4 345	5 097	10 908	4 680	13 519	23 043
3 800	782	4 133	4 848	10 391	4 450	12 857	21 916
3 900	744	3 936	4 617	9 908	4 237	12 241	20 869
4 000	708	3 753	4 401	9 458	4 038	11 668	19 893
4 100	675	3 582	4 201	9 037	3 853	11 134	18 984
4 200	644	3 423	4 013	8 643	3 680	10 635	18 135
4 300 4 400	615 588	3 274	3 838	8 274	3 518	10 169	17 341
4 400	563	3 134	3 674 3 520	7 928	3 367	9 732	16 597 15 900
4 600	539	3 003 2 880	3 3 3 7 6	7 603 7 297	3 226 3 093	9 323 8 939	15 900
4 700	517	2 765	3 240	7 010	2 968	8 577	14 630
4 800	496	2 656	3 113	6 738	2 851	8 238	14 050
4 900	490	2 554	2 992				
5 000	476	2 457	2 879	6 482 6 241	2 740 2 636	7 918 7 616	13 506 12 991
5 100	430	2 366	2 772	6 012	2 537	7 331	12 506
5 200	424	2 279	2 670	5 796	2 444	7 061	12 046
5 300	409	2 198	2 574	5 591	2 356	6 806	11 612
5 400	394	2 190	2 484	5 396	2 273	6 565	11 200
5 500	380	2 120	2 397	5 212	2 193	6 336	10 810
5 600	367	1 977	2 397	5 037	2 193	6 119	10 440
5 700	354	1 911	2 238	4 870	2 047	5 913	10 089
5 800	342	1 848	2 164	4 712	1 980	5 717	9 755
5 900	331	1 788	2 094	4 561	1 915	5 530	9 437
6 000	320	1 731	2 027	4 417	1 854	5 353	9 134
0.000	0 <u>L</u> 0	1 701	L 0L1	1 717	1 004	0 000	0 107

горячее цинкование

Допустимые нагрузки при продольном изгибе в соответствии с DIN EN 1993-1-1, разделы 6.2 и 6.3.

Табличные значения действительны для эффективных поперечных сечений и центрально приложенной нагрузки! Возможная незначительная степень изменения толщины при потере устойчивости при изгибе и кручении исследуется отдельно!


Рассматривается продольный изгиб вокруг z-оси и y-оси.

Максимально допустимая нагрузка при продольном изгибе внесена в таблицу.

Коэффициент запаса прочности $\gamma = 1,54$ учитывает коэффициент запаса прочности и комбинированный коэффициент в соответствии, а также коэффициент запаса прочности материала.

В зависимости от способа крепления профиля выбрать одну из расчетных схем из представленных ниже. По выбранной расчетной схеме, используя длину профиля, определить нормативную длину Lk.

По полученному значению Lk определить максимально допустимую нагрузку F по таблице.

